HYPERSURFACES OF ALMOST γ-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTION
نویسندگان
چکیده
منابع مشابه
Non-degenerate Hypersurfaces of a Semi-riemannian Manifold with a Semi-symmetric Metric Connection
We derive the equations of Gauss and Weingarten for a non-degenerate hypersurface of a semi-Riemannian manifold admitting a semi-symmetric metric connection, and give some corollaries of these equations. In addition, we obtain the equations of Gauss curvature and Codazzi-Mainardi for this non-degenerate hypersurface and give a relation between the Ricci and the scalar curvatures of a semi-Riema...
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملsome vector fields on a riemannian manifold with semi-symmetric metric connection
in the first part of this paper, some theorems are given for a riemannian manifold with semi-symmetric metric connection. in the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. we obtain some properties of this manifold having the vectors mentioned above.
متن کاملAscreen Lightlike Hypersurfaces of a Semi-riemannian Space Form with a Semi-symmetric Non-metric Connection
We study lightlike hypersurfaces of a semi-Riemannian space form M̃(c) admitting a semi-symmetric non-metric connection. First, we construct a type of lightlike hypersurfaces according to the form of the structure vector field of M̃(c), which is called a ascreen lightlike hypersurface. Next, we prove a characterization theorem for such an ascreen lightlike hypersurface endow with a totally geodes...
متن کاملOn some properties of submanifolds of a Riemannian manifold endowed with a semi-symmetric non-metric connection
We study submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection. We prove that the induced connection is also a semi-symmetric non-metric connection. We consider the total geodesicness, total umbilicity and the minimality of a submanifold of a Riemannian manifold with the semi-symmetric non-metric connection. We have obtained the Gauss, Codazzi and Ricci equations wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2009
ISSN: 1015-8634
DOI: 10.4134/bkms.2009.46.5.895